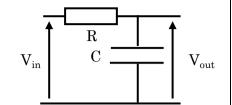

Nom: Prénom: Groupe: ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS Note Université Cycle Initial Polytech Nice Première Année **S**ophia Antipolis Année scolaire 2016/2017 / 20 École d'ingénieurs DS électronique POLYTECH analogique No2

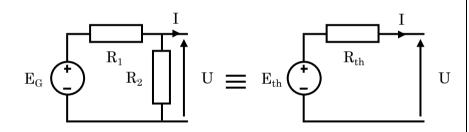
Lundi 29 Mai 2017 Durée : 1h30

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).


RAPPELS:

EXERCICE I : Vérification des compétences de base (8.5 pts)

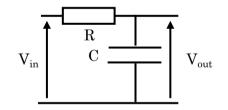
0.5


I.1. Déterminer l'expression de la tension $V_{\rm out}(t)$. On supposera qu'à t=0, le condensateur est déchargé et que la tension en entrée passe de 0 à la valeur $V_{\rm in}$.

 $V_{out}(t) =$

0.5

I.2. Donner l'expression du générateur de Thévenin équivalent.


 $E_{th} =$

 $R_{th} =$

I.3. Soit le circuit de la figure ci-contre

0.5

I.3.1. Déterminer l'expression complexe du gain et faire apparaître la forme d'un passe haut ou d'un passe bas

 $\frac{V_{out}}{V_{in}} =$

0.25 **I.3.2.** Donner l'expression de la fréquence de coupure

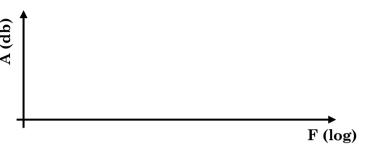
 $F_C =$

$$\frac{V_{out}}{V_{in}}\Big|_{\omega \to 0} =$$

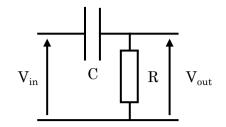
$$\frac{V_{out}}{V_{in}}\Big|_{\omega \to \infty} =$$

I.3.4. Est-ce que ce circuit correspond à un filtre

0.25


0.5

0.5


A. Passe Bas

- B. Passe Haut
- C. Passe Calmasson

I.3.5. Représenter l'allure fréquentielle du gain

I.4.	Soit le	circuit	de la	figure	ci-contro

I.4.1. Déterminer l'expression complexe du gain et faire apparaître la forme d'un passe haut ou d'un passe bas

$$\frac{V_{out}}{V_{in}} =$$

0.5

0.25 I.4.2. Donner l'expression de la fréquence de coupure

$$F_C =$$

0.5

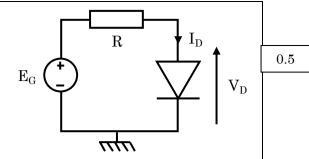
0.5

I.4.3. Donner les valeurs limites du gain

$$\frac{V_{\text{out}}}{V_{\text{in}}}\Big|_{\omega \to 0} =$$

$$\frac{V_{\text{out}}}{V_{\text{in}}}\Big|_{\omega \to \infty} =$$

0.25 I.4.4. Est-ce que ce circuit correspond à un filtre


- A. Passe Bas
- B. Passe Haut
- C. Passe écomposé

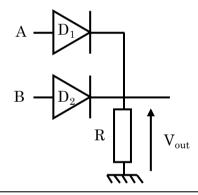
I.4.5. Représenter l'allure fréquentielle du gain

T	5	Soit	- 10	circ		oi.	001	troc
Ι.	อ.	5011	ъtе	circ	ะนาโ	C1-	con:	tre

I.5.1. Déterminer l'équation de la droite de charge

 $I_D =$

 $\textbf{I.5.2.} \ \ Déterminer \ l'expression \ du \ courant \ qui \ circule \ dans \ la \ diode \ en \ fonction \ des \ éléments \ du montage \ et \ des \ paramètres \ V_S \ et \ R_S \ de \ la \ diode.$

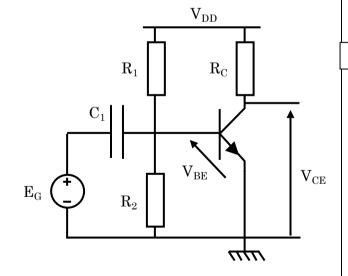

0.5

 $I_{D0} =$

I.6. Compléter en logique (0 ou 1) la table de vérité de la porte ci-dessous

0.5

0.5



A	В	V_{out}
0	0	
0	1	
1	0	
1	1	

I.7. Soit le circuit ci-contre

I.7.1. Donner l'expression du courant I_B en régime statique.

 $I_{B0} =$

0.25

I.7.2. Donner l'expression du courant Ic en régime statique.

 $I_{C0} =$

0.25

I.7.3. Donner l'expression de la tension V_{CE} en régime statique.

 $V_{\rm CE0} =$

0.5

I.7.4. Donner le schéma petit signal dans la bande passante

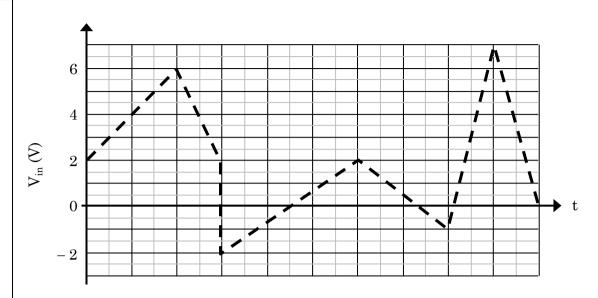
0.5

I.7.5. Donner l'expression du gain dans la bande passante

$$A_V = \frac{v_{ce}}{e_g} =$$

EXERCICE II: Exercices avec des diodes (3+ 2.5 pts)

II.1. Soit l'écrêteur à diodes de la figure ci-contre V_{DD} avec $V_{DD} = 5V$, $R = 1 \text{ k}\Omega$ et pour les diodes $V_S = 0 \text{ V}$ et $R_S = 0$. II.1.1. Si $V_{in} > V_{DD}$ **II.1.1.a.** Dans quel régime est D_1 ? 0.25 A. Passant / B. Bloqué / C. ni l'un ni l'autre \mathbf{R} V_{out} II.1.1.b. Dans quel régime est D2? 0.25A. Passant / B. Bloqué / C. ni l'un ni l'autre **II.1.1.c.** Donner la valeur ou l'expression de la tension de sortie? 0.25 $V_{out} =$ II.1.2. Si $V_{\rm in} < 0$ II.1.2.a. Dans quel régime est D₁? 0.25 A. Passant / B. Bloqué / C. ni l'un ni l'autre II.1.2.b. Dans quel régime est D_2 ? 0.25 A. Passant / B. Bloqué / C. ni l'un ni l'autre II.1.2.c. Donner la valeur ou l'expression de la tension de sortie? 0.25 $V_{out} =$ II.1.3. Si $0 \le V_{\rm in} \le V_{\rm DD}$ **II.1.3.a.** Dans quel régime est D_1 ? 0.25A. Passant / B. Bloqué / C. ni l'un ni l'autre II.1.3.b. Dans quel régime est D2? 0.25 A. Passant / B. Bloqué / C. ni l'un ni l'autre


0.25

II.1.3.c. Donner la valeur ou l'expression de la tension de sortie ?

 $V_{out} =$

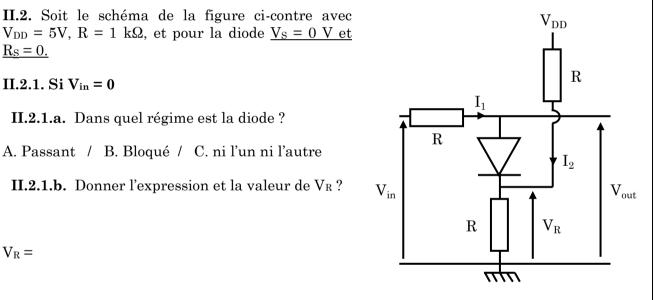
0.75

II.1.4. Tracer l'allure de V_{out} sur le graphique ci-dessous

 $V_{DD} = 5V$, $R = 1 \text{ k}\Omega$, et pour la diode $V_S = 0 \text{ V}$ et $\underline{R_S} = 0.$

II.2.1. Si $V_{\rm in} = 0$

0.25


II.2.1.a. Dans quel régime est la diode?

A. Passant / B. Bloqué / C. ni l'un ni l'autre

0.5

II.2.1.b. Donner l'expression et la valeur de $V_{\mbox{\scriptsize R}}$?

$$V_R =$$

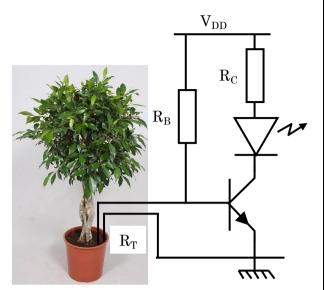
0.25

II.2.1.c. Donner la valeur de Vout ?

 $V_{\rm out} =$

0.25

II.2.2. A partir de quelle tension V_{in}, la diode se débloque ?


 $V_{\rm in} =$

II.2.3. Si $V_{in} = V_{DD}$	
II.2.3.a. Dans quel régime est la diode ?	0.25
A. Passant / B. Bloqué / C. ni l'un ni l'autre	
II.2.3.b. Donner l'expression et la valeur de V_{out} ? Vous pouvez vous aider de I_1 et I_2	1
$ m V_{out} =$	
Brouillon	<u></u>
Droumon	

III.1. Soit le montage ci-contre qui indique quand il faut arroser une plante et qui fonctionne avec 2 pipiles de 1.5 V (donc $V_{DD}=3$ V). Pour le transistor $\beta=100$, $V_{CEsat}=0.2$ V, $V_S=0.6$ V et $R_S=1$ k Ω . Pour la LED: $V_{LED}=2$ V et $R_{LED}=0$ Ω .

 R_T est la résistance de la terre qui change avec le taux d'humidité. Pour simplifier l'étude, on considère que :

- si la terre est humide, $R_T = 0$
- si la terre est sèche, R_T est infinie (circuit ouvert).

0.5

III.1.1. Donner le générateur de Thévenin équivalent aux 2 pipiles, R_T et R_B.

 $E_{\mathrm{th}} =$ $R_{\mathrm{th}} =$

0.5

III.1.2. Simplifier les expressions du générateur de Thèvenin dans le tableau ci-dessous

Terre	${ m E_{th}}$	$ m R_{th}$
Sèche		
Humide		

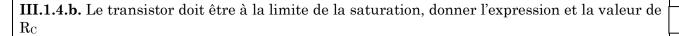
0.25

III.1.3. Quand la terre est <u>humide</u>, est ce que la LED est allumée ?

A. OUI

B. NON

C. une fois OUI, une fois NON


0.5

III.1.4. En cas de sècheresse!

1

III.1.4.a. On souhaite faire passer 20 mA dans la LED, donner l'expression et la valeur de la résistance R_B.

 $R_B =$

0.25

 $R_C =$

III.2. Soit le circuit ci-dessous. Le transistor a un gain en courant β , une tension de saturation V_{CEsat} ainsi qu'une résistance R_S et une tension V_S pour sa diode base-émetteur. 1 ne sera pas négligé devant β . E_G est un signal audio dont les fréquences sont comprises entre 20 Hz et 20 kHz.

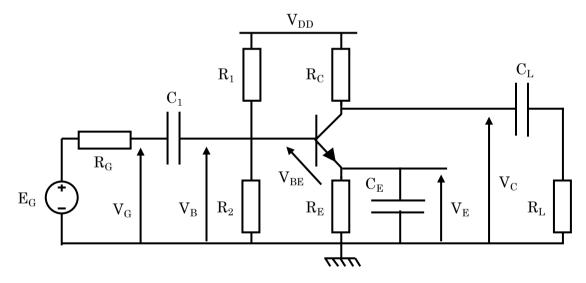
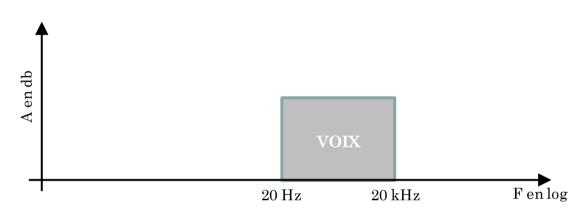


Figure III.1

III.2.1. Donner le schéma en petit signal du montage aux fréquences de E_G . Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b , et $\beta.i_b$.

1


1

III.2.2. Donner l'expression du gain en tension

$$A_V = \frac{v_c}{e_g} =$$

1

III.2.3. Représenter l'allure des filtres liés à C1, CE et CL sur la figure ci-dessous.

